The role of top-down processing in segmentation & recognition

Object recognition, given real images

- clutter, occlusion, noise
- role of cortical architecture

Object recognition given occlusion, clutter

Linking local information (features) likely to belong to the same object or pattern

- local ambiguity, noise
- need for generic priors, e.g. smoothness, contour and region-based grouping

Resolving competing explanations

- occlusion, clutter
- need for domain-specific priors

Object recognition given occlusion, clutter

Linking local information (features) likely to belong to the same object or pattern

- local ambiguity, noise
- need for generic priors, e.g. smoothness

Resolving competing explanations

- occlusion, clutter
- need for domain-specific priors

Doesn't mean that bottom-up segmentation can't work, but that achieving high-performance requires a combination of good bottom-up processing with top-down verification.

Neural evidence for top-down role in perceptual organization?

Cortical Mechanism? some speculation 1. Feedforward: local features to objects		
	2. Feedback modelsa. Feedforward + attention:competitive selection of fea	tures
	b. Predictive coding c. Sparsification	Internal generative models
	MacKay DM (1956) The epistemological problem for automata. In: Automata Studies (Shannon CE, McCarthy J, eds), pp 235-250. Princeton: Princeton University Press.	

Cortical organization

- Organization of visual cortices is a hierarchy
- Depends on distinct feedforward/feedback pathways
- Different laminar specificity
- More backward connections
- Backward connections more diffuse

Forward connections

- Sparse axonal bifurcations
- Topographically organized
- Originate in supragranular layers (I,II,III)
 - III => adjacent columns
 - II => other cortical areas
- Terminate in layer IV

Friston K (2003) Learning and inference in the brain. Neural Netw 16:1325-1352.

Feedback connections

- Lots of axonal bifurcation
- Diffuse topography
- Originate in infragranular (V, VI) layers
- Mainly terminate in supragranular layers (I,II,III)

Friston K (2003) Learning and inference in the brain. Neural Netw 16:1325-1352.

Internal generative models Analysis-by-synthesis

Predictive coding

• High-level object models project back predictions of the incoming data

Poor fit, high residual => high activity

Sparsification

• A good high-level fit tells earlier areas to "stop gossiping"

Amplify the activity for early features that belong to object, suppress the rest

Summary

Common patterns of neocortex structure

• Has inspired lots of models of cortical information processing

Key target problem?

• Object perception given occlusion, clutter

fMRI and object grouping given occlusion

• consistent with feedback, but...